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Abstract

Flow around two oscillating cylinders in a side-by-side arrangement at Reynolds number (Re) ¼ 185 is simulated

using the immersed boundary method. The purpose of this study is to investigate the combined effects of the gap

between the two cylinders and their oscillation in the flow. The cylinders oscillate transversely to a uniform cross-flow

with a prescribed sinusoidal function in the opposite direction, with the oscillation amplitude equal to 20% of the

cylinder diameter. The gap between the two cylinders and the oscillating frequency are chosen as major variables for the

parametric study to investigate their influence on the flow pattern. The ratio of mean gap distance between the two

oscillating cylinders to the cylinder diameter is chosen to be 0.6, 1.0, 1.4, and 1.8, and the ratio of oscillating frequencies

to the natural vortex shedding frequency of a fixed cylinder is 0.8, 1.0, and 1.2. Wake patterns and the drag and lift

coefficients are described and compared with those from a single oscillating cylinder and two stationary cylinders. The

wake patterns of two oscillating cylinders can be explained by flow mechanisms of two stationary cylinders, a single

oscillating cylinder, and their combinations, and are in agreement with classifications of flow over two stationary

cylinders presented in previous studies. In the case of two oscillating cylinders, the modulation phenomenon appears

from a lower excitation frequency than in a single oscillating cylinder. Generally, oscillating cylinders have higher drag

and root-mean-square (r.m.s.) values of drag coefficients than stationary cylinders.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

There is extensive literature on flow over a cylinder, as it is an important problem for academic and engineering

purposes. For instance, the tube bundle for heat exchangers is an example of multiple cylinders, and some experience
e front matter r 2008 Elsevier Ltd. All rights reserved.
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flow-induced vibrations. In addition, oscillating cylinders in cross or stationary flow are frequently observed in offshore

structures and power cables with fluid–structure interactions. Building on the understanding of flow over a single

stationary cylinder, many researchers have recently focused attention on multiple stationary or oscillating cylinders.

Flow around two oscillating cylinders is expected to have characteristics of both an oscillating cylinder and multiple

cylinders. Thus, the cases of single oscillating cylinder and two stationary cylinders are focused on for the literature

survey below.

Flow past a single oscillating cylinder has been investigated in several previous studies, including experimental studies

by Toebes (1969), Gu et al. (1994) and Williamson and Roshko (1988), and numerical investigations by Meneghini and

Bearman (1995), Blackburn and Henderson (1999), Anagnostopoulos (2000), Guilmineau and Queutey (2002), Ponta

and Aref (2006) and Leontini et al. (2006) (see Khalak and Williamson (1999) for further references).

Williamson and Roshko (1988) analyzed the wake patterns behind an oscillating cylinder at low Reynolds numbers.

The two main parameters that determine the wake patterns are the amplitude of oscillation and the frequency ratio

(trajectory wavelength of the cylinder over its diameter). They described the formation of vortices and shedding in detail

along the moving cylinder. In the fundamental lock-in regime, the oscillating cylinder sheds four vortices during each

cycle. They classified the wake patterns with a ‘P’ for a vortex pair and a ‘S’ for a single vortex. Below a critical

trajectory wavelength, the cylinder creates a 2S mode of the Karman street-type vortex. If the wavelength is increased

over a critical value, the cylinder sheds two like-signed vortex pairs (2P mode).

Gu et al. (1994) experimentally investigated the flow over an oscillating cylinder for Reynolds numbers of 185 and

5000. The frequency ratio, which is defined as the ratio of the oscillating frequency to the natural vortex shedding

frequency of the fixed cylinder, ranged from 0.8 to 1.2. As the frequency ratio increases, the vortex formation length

decreases, and if the frequency ratio increases over 1.12, a switch in the vortex formation position occurs which persists

up to a frequency ratio of 1.2.

Guilmineau and Queutey (2002) numerically simulated the flow over an oscillating cylinder at Re ¼ 185 to reproduce

the experimental results of Gu et al. (1994). They also observed the vortex switching phenomenon and explained it with

detailed numerical data such as the distribution of vorticity and pressure along the cylinder and the r.m.s. of streamwise

velocity at the centerline.

The flow over two stationary cylinders in a side-by-side arrangement is another problem relevant to the present study.

Kim and Durbin (1988) experimentally studied the wake at Re ¼ 2� 103 for a gap spacing (g) of 0.75, where g is the

distance between two cylinders normalized by the cylinder diameter. The wakes flip-flop randomly between two

asymmetric states. The time-scale for the flip-flopping is several orders of magnitude longer than that of vortex

shedding.

Sumner et al. (1999) investigated flow in the range of Re ¼ 500–3000 and g ¼ 0–5 and identified three basic wake

patterns that were insensitive to the Reynolds number (Re) : single-bluff-body vortex shedding at small gap spacings

(0pgo0.2), biased flow with synchronized vortex shedding at intermediate spacings (0.2pgp1.2), and symmetric flow

with synchronized vortex shedding at larger spacings (1.2ogp3.5).

Recently, Kang (2003) investigated flow over two stationary cylinders in a side-by-side arrangement at 40pRep160

and with go5. He classified six wake patterns, including ‘anti-phase synchronized’ (gX2), ‘in-phase synchronized’

(gX1.5), ‘flip-flopping’ (0.4pgp1.5), ‘single bluff-body’ (gp0.4), ‘deflected’ (50pRep110 and 0.2pgp1), and

‘steady’ (Rep40 and gX0.5) wake patterns. These wake patterns in the laminar regime, which are affected by gap

spacing more than by Reynolds number, are illustrated in detail along with drag and lift coefficients.

Oscillating cylinders show lock-in phenomena and various wake patterns as a function of oscillation frequency

and amplitude. In the case of multiple stationary cylinders, the different shed vortices interfere with the interac-

tion, depending on the gap between the two cylinders. Thus, the flow characteristics of two oscillating cylinders

may differ from those of two stationary cylinders and one oscillating cylinder. Therefore, in this study, the gap

spacing between the two cylinders and their oscillation frequency are chosen as the basic variables for the parametric

study.

There are few previous studies of flow over two oscillating cylinders. Mahir and Rockwell (1996) experimentally

studied the flow over two oscillating cylinders in a side-by-side arrangement in a cross-flow. The two cylinders oscillated

independently with phase-change between the position of the two cylinders at Re ¼ 160. They varied the frequency

ratio, the phase angle, and the amplitude. At low frequency ratios, the natural vortex shedding frequency of the two

fixed cylinders appeared as a distinctive peak. As the frequency ratio increases, the oscillation frequency dominates,

while the natural shedding frequency fades. They also changed the phase angle at the same frequency and observed the

transformation from modulated to lock-in response.

Jester and Kallinderis (2004) numerically simulated two oscillating cylinders in a side-by-side arrangement at

Re ¼ 160 and compared the wake patterns with those from Mahir and Rockwell (1996), however, they gave no detailed

results on the flow field or other quantitative information.
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The objective of this study is to investigate the characteristics of flow over two oscillating cylinders in comparison with

those of a single oscillating cylinder and of two stationary cylinders. Here, the two cylinders in a side-by-side arrangement

oscillate alternately towards and away from each other, out-of-phase, in a cross-flow at Re ¼ 185. The dependency of the

wake, drag, and lift coefficients on the frequency ratio and the gap spacing is the primary focus of this study.
2. Numerical method

2.1. Governing equations

Fig. 1 shows the computational domains and boundary conditions considered in this study. The governing equations

describing instantaneous incompressible viscous flow in the dimensionless form are given by the continuity and the

momentum equations as follows:

qui

qxi

� q ¼ 0, (1)

qui

qt
þ

quiuj

qxj

¼ �
qp

qxi

þ
1

Re

q2ui

qxjqxj

þ f i, (2)

where q and fi are the mass sink/source and the momentum forcing, respectively, for the immersed boundary method

(Kim et al., 2001).

Normalization of Eqs. (1) and (2) using the cylinder diameter D and the free-stream velocity UN results in the

dimensionless parameter of Reynolds number Re ¼ UND/v. A finite volume method is used in the present study, where

the second-order two-step fractional step method is employed for time advancement. This scheme was used previously

by Kim and Moin (1985) and Zang et al. (1994). The nonlinear terms are treated explicitly using the second-order

Adams–Bashforth scheme, and diffusion terms are treated implicitly using the Crank–Nicolson scheme.

2.2. Computational details

The computational domain is chosen to be �40oxo50 and �40oyo40. The Dirichlet condition for velocity is

applied at the inlet and at the top and bottom walls with u ¼ 1, v ¼ 0, where u and v are the x and y components of

velocity, respectively. A convective flow condition, qui/qt+cqui/qx ¼ 0 (c is the average streamwise velocity at the

outlet), is adopted for the outlet. A grid of 900� 682 grid points with a fine grid (Dx ¼ 0.01, Dy ¼ 0.01) near

the oscillating cylinder is used. The condition of CFLo0.3 is used to determine the nondimensional time step used in

the calculations, and as a result a time step of 0.001 is used for all the calculations.

Previous numerical studies regarded the flow around an oscillating cylinder near Re ¼ 185 as two-dimensional (2-D)

even though it may be three-dimensional (3-D) flow for a stationary cylinder (Blackburn and Henderson, 1999;

Guilmineau and Queutey, 2002). According to Blackburn and Henderson (1999), as the spanwise correlations of forces
Fig. 1. Computational domain and boundary conditions.
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and wake velocities increase with increasing cylinder motion amplitude, it is reasonable to suggest that the harmonic

motion of a long circular cylinder will suppress the 3-D effects and produce flows that are more 2-D than their fixed-

cylinder counterparts, at least in the near-wake region. For two cylinders, there may be no critical errors in the 2-D flow

assumption at about g40.4 (Kang, 2003). In this study, two oscillating cylinders are implemented with the immersed

boundary method (Kim et al., 2001). The advantage of the immersed boundary method is that even as the cylinders

move, the grid does not need to be re-generated.
Fig. 3. Time-averaged drag and r.m.s. of drag and lift coefficients for one oscillating cylinder at Re ¼ 185. Results from this study are

compared with those from Guilmineau and Queutey (2002).

Fig. 2. Drag and lift coefficients as a function of time for one oscillating.
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2.3. Important parameters

As shown in Fig. 1, the out-of-phase periodic oscillations of the two cylinders are governed by the following

equations:

yup ¼
go

2
þ

D

2
þ Ae sinð2pf etÞ; ydn ¼

�go

2
þ

D

2
� Ae sinð2pf etÞ (3,4)
Fig. 4. Instantaneous vorticity contours (left column) and streamlines (right column) for various gap spacings at Re ¼ 100: (a) g ¼ 3.0,

(b) g ¼ 1.5, (c) g ¼ 0.7, and (d) g ¼ 0.2.
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where Ae is the oscillation amplitude, which in the present simulations is chosen to be 0.2, yup and ydn are the centers of

the upper and lower cylinders, respectively, fo is the natural frequency of one cylinder when held fixed at Re ¼ 185, fe is

the excitation frequency, and go is the mean value of the gap between the two oscillating cylinders. Thus, the gap (g)
Fig. 5. Variation of the time-averaged and r.m.s. values of lift and drag coefficients at Re ¼ 100.

Fig. 6. Instantaneous vorticity contours of two oscillating cylinders at Re ¼ 160, go ¼ 2, Ae ¼ 0.2, and fe/fo** ¼ 1.0. (a) present result,

(b) results from Mahir and Rockwell (1996).
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between the oscillating cylinders is (go�0.4)pgp(go+0.4). The natural frequency fo is 0.192, which was determined

from the simulation of one fixed cylinder.
3. Validations

Three different problems are considered to validate the numerical simulation method. First, flow around a single

oscillating cylinder is simulated at Re ¼ 185, Ae ¼ 0.2, and fe/fo ¼ 0.8–1.2. Time histories of the drag and lift

coefficients for fe/fo ¼ 0.8, 1.0, and 1.2 are presented in Fig. 2. For fe/fo ¼ 0.8 and fe/fo ¼ 1.0, the drag and lift

coefficients show regular sinusoidal variations, and the oscillation amplitude for fe/fo ¼ 1.0 is larger than that for

fe/fo ¼ 0.8. For fe/fo ¼ 1.2, the drag and lift coefficients have a low frequency modulation. These characteristics are
Fig. 7. Drag and lift coefficients (left column) and power spectrum of lift coefficients (right column) for go ¼ 1.8. In (a) and (d),

fe/fo ¼ 0.8; in (b) and (e), fe/fo ¼ 1.0; in (c) and (f), fe/fo ¼ 1.2.
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Fig. 8. Time series of instantaneous vorticity fields for go ¼ 1.8 and fe/fo ¼ 0.8 for (a) the furthest positions and (b) the closest

positions.

Fig. 9. Time series of instantaneous vorticity fields for go ¼ 1.8 and fe/fo ¼ 1.0 for (a) the furthest positions and (b) the closest

positions.

D.S. Lee et al. / Journal of Fluids and Structures 25 (2009) 263–283270
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consistent with the findings of Guilmineau and Queutey (2002). In addition, the mean drag and r.m.s. of the drag and

lift coefficients agree well with those of Guilmineau and Queutey (2002), as shown in Fig. 3.

In the case of two stationary cylinders, we follow the study of Kang (2003). At Re ¼ 100, two stationary cylinders

were simulated for gaps of 3.0, 1.5, 0.7, and 0.2. In Fig. 4, instantaneous vorticity fields and streamlines show the anti-

phase-synchronized pattern for g ¼ 3.0, in-phase synchronized pattern for g ¼ 1.5, flip-flop pattern for g ¼ 0.7, and

single bluff-body pattern for g ¼ 0.2. These results show good agreement with Kang (2003). Time-averaged drag and

lift coefficients and r.m.s. of lift coefficients as the mean value between two cylinders are plotted in Fig. 5, and are in

good agreement with Kang (2003).

For two oscillating cylinders, we confirm the present numerical method of simulating the relative motion of multi-

bodies by following Mahir and Rockwell’s (1996) experimental conditions of Re ¼ 160, Ae ¼ 0.2, go ¼ 2, and

fe/fo** ¼ 1.0, where fo** is the natural vortex shedding frequency of the two fixed cylinders. The parallel anti-phase

streets of vortices obtained from the present computation are in good agreement with the results of Mahir and Rockwell

(1996), as shown in Fig. 6.
4. Results

4.1. Wake patterns

4.1.1. go ¼ 1.8

For go ¼ 1.8, which corresponds to the largest dimensionless gap between the two cylinders considered in this study,

the two cylinders oscillate out of phase. According to Kang (2003), wake patterns for two stationary cylinders with a

gap go ¼ 1.8 at Re ¼ 185 show ‘anti- or in-phase synchronized’ patterns.

Fig. 7 shows the time evolution of the drag and lift coefficients for the upper and lower cylinders for go ¼ 1.8 and the

power spectrum of the lift coefficients. Throughout this paper, a solid line is used for the upper cylinder and a dashed

line for the lower cylinder. For fe/fo ¼ 0.8 (Fig. 7(a)), drag coefficients of the upper and lower cylinders are the same in

magnitude and pattern and show the signs of modulation. The lift coefficients for the two cylinders are ‘anti-phase
Fig. 10. Time series of instantaneous vorticity fields for go ¼ 1.8 and fe/fo ¼ 1.2 for (a) the furthest positions and (b) the closest

positions.
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synchronized’. Modulation does not appear for the single oscillating cylinder at fe/fo ¼ 0.8 or for the two stationary

cylinders for go ¼ 1.8. However, when those conditions are combined, modulation appears because of interference of

symmetric vortices from the two cylinders (see Figs. 2 and 4 for the single oscillating and two stationary cylinders,

respectively). Lift coefficients show symmetry, as two stationary cylinders do for go ¼ 1.8.

For fe/fo ¼ 1.0 (Fig. 7(b)), drag and lift coefficients show periodicity. The drag coefficients of the upper and lower

cylinders are the same and lift coefficients show corresponding symmetry. They are also ‘anti-phase synchronized’. As

the oscillation frequency is increased to 1.2 (Fig. 7(c)), the drag coefficients of the upper and lower cylinders show a

minor discrepancy between them, and the lift coefficients also show small deviations in symmetry. They alternately

show ‘anti-phase synchronized’ and ‘deflected’ patterns. They also show modulation phenomena as appeared in

fe/fo ¼ 0.8. The Fourier transformations of the lift coefficients, shown in Fig. 7(d–f), have primary peaks at fo for

fe/fo ¼ 0.8 and at fo ¼ fe for fe/fo ¼ 1.0. For fe/fo ¼ 1.2, it shows one primary peak at fEfe and a secondary peak at fEfo.

In this study, lock-in is judged if the primary frequency of the lift coefficient is the same as that of the body motion
Fig. 11. Drag and lift coefficients (left column) and power spectra of lift coefficients (right column) for go ¼ 1.4. In (a) and (d),

fe/fo ¼ 0.8; in (b) and (e), fe/fo ¼ 1.0; in (c) and (f), fe/fo ¼ 1.2.
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Fig. 12. Time series of instantaneous vorticity fields for go ¼ 1.4 and fe/fo ¼ 0.8 for (a) the furthest positions and (b) the closest

positions.

Fig. 13. Time series of instantaneous vorticity fields for go ¼ 1.4 and fe/fo ¼ 1.0 for (a) the furthest positions and (b) the closest

positions.

D.S. Lee et al. / Journal of Fluids and Structures 25 (2009) 263–283 273
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frequency. Thus, fe/fo ¼ 1.2 is in the ‘lock-in’ regime and others are not. As the power spectra of the upper and lower

cylinders are the same, only a solid line can be seen in Fig. 7(d–f).

Fig. 8 shows the instantaneous vorticity fields of the two oscillating cylinders when they are furthest and closest to

each other. Anti-phase synchronized vortices form two parallel anti-phase streets that are symmetric about the wake

centerline. The structure of wake pattern remains symmetric downstream without merging or distortion of the vortices.

The vortex shedding of upper and lower cylinders interferes and the vortex shedding pattern is different from that of

one oscillating cylinder.

Fig. 9 shows the instantaneous vorticity fields for fe/fo ¼ 1.0. Unlike fe/fo ¼ 0.8, fe/fo ¼ 1.0 has the same pattern at

both the furthest and the closest positions. The lateral (streamwise) vortex formation length and lateral gap between the

shed vortices remain constant. The vortices in the wake keep their symmetric form until far downstream, without

merging or distortion. Fig. 10 shows the instantaneous vorticity for fe/fo ¼ 1.2. The vortices are asymmetric and some

merge and are distorted while flowing downstream. Thus, for go ¼ 1.8, ‘in-phase synchronized’ and ‘deflected’ pattern

are found for 0.8pfe/fop1.2.
4.1.2. go ¼ 1.4z

This range includes the flip-flop and ‘anti- or in-phase synchronized’ wake patterns for two stationary cylinders

(Kang, 2003). Time histories of drag and lift coefficients of two oscillating cylinders are depicted in Fig. 11. At

fe/fo ¼ 0.8 (Fig. 11(a)), the drag and lift coefficients are modulated, as in the case of go ¼ 1.8 and fe/fo ¼ 0.8 (Fig. 7(a)).

However, drag coefficients of the upper and lower cylinders are not the same, and the lift coefficients of the upper and

lower cylinders are not symmetric. They show ‘anti-phase synchronized’ and ‘deflected’ patterns. When fe/fo ¼ 1.0, the

drag and lift coefficients (Fig. 11(b)) have nearly the same characteristics as the case of go ¼ 1.8 (Fig. 9). They are also

‘anti-phase synchronized’. As the oscillating frequency is increased to 1.2 (Fig. 11(c)), symmetric lift coefficients are

observed, while for the wider gap of go ¼ 1.8 and fe/fo ¼ 1.2 we previously observed asymmetry. The drag coefficients of

the two cylinders are the same, while for go ¼ 1.8 at the same frequency ratio, the drag for the two cylinders shows a

discrepancy. The Fourier transforms of lift coefficients for go ¼ 1.4 are shown in Fig. 11(d–f), and show characteristics

similar to the case of go ¼ 1.8. The spectra have primary peaks at fo for fe/fo ¼ 0.8 and 1.0 and at fe for fe/fo ¼ 1.2.
Fig. 14. Time series of instantaneous vorticity fields for go ¼ 1.4 and fe/fo ¼ 1.2 for (a) the furthest positions and (b) the closest

positions.
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Because of mutual interference of vortices, the wake patterns shown in the instantaneous vorticity fields (Fig. 12)

appear to be the ‘deflected’ pattern rather than the ‘flip-flop’ pattern that appears for two stationary cylinders at

go ¼ 1.4. Kang (2003) inferred that the deflected wake pattern should be another kind of flip-flop pattern with an

extremely large flip-flopping time scale, as mentioned in Kim and Durbin (1988). Thus, the wake patterns of the upper

and lower cylinders can be switched with extremely large simulation time. When fe/fo ¼ 1.0, the characteristics of the

vortices for go ¼ 1.4 are the same as for go ¼ 1.8, as can be seen in Figs. 9 and 13.

Fig. 14 shows the instantaneous vorticity fields for fe/fo ¼ 1.2. A symmetric wake pattern is observed and merging

between vortices occurs only in the flow direction. Generally, vortices shed with short streamwise vortex lengths

maintain their shape well, while long vortices easily deform and merge as they flow downstream. At fe/fo ¼ 1.2, all

characteristics for go ¼ 1.4 are similar to those of go ¼ 1.8 except the symmetry of flow pattern. In summary, for

go ¼ 1.4, ‘in-phase synchronized’ and ‘deflected’ patterns are found for 0.8pfe/fop1.2.
Fig. 15. Drag and lift coefficients (left column) and power spectrum of lift coefficients (right column) for go ¼ 1. In (a) and (d),

fe/fo ¼ 0.8; in (b) and (e), fe/fo ¼ 1.0; in (c) and (f), fe/fo ¼ 1.2.
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Fig. 16. Time series of instantaneous vorticity fields for go ¼ 1 and fe/fo ¼ 0.8 for (a) the furthest positions and (b) the closest positions.

Fig. 17. Time series of instantaneous vorticity fields for go ¼ 1 and fe/fo ¼ 1.0 for (a) the furthest positions and (b) the closest positions.

D.S. Lee et al. / Journal of Fluids and Structures 25 (2009) 263–283276
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4.1.3. go ¼ 1

The flow characteristics at go ¼ 1 include ‘flip-flop’ and ‘anti- or in-phase synchronized’ wake patterns for two

stationary cylinders (Kang, 2003). Fig. 15(a) shows the drag and lift coefficients when fe/fo ¼ 0.8. Their patterns for

go ¼ 1 are more irregular than those for go ¼ 1.4. A flip-flop pattern can be found in the drag coefficients, but anti- or

in-phase synchronized patterns cannot be found. The Fourier transform of the lift coefficients are presented in

Fig. 15(d) and show a primary peak at fEfo. When fe/fo ¼ 1.0, the patterns of the drag and lift coefficients for go ¼ 1

(Fig. 15(b)) are similar to the cases of go ¼ 1.8 and go ¼ 1.4. They show an anti-phase synchronized pattern. The primary

peak shown in Fig. 15(e) is at fe. A weak modulation can be discerned for fe/fo ¼ 1.2, as shown in Fig. 15(c), and the

primary peak shown in Fig. 15(f) is at fe. As the gap between the two cylinders is decreased, symmetry in lift coefficients

and the simultaneity of drag coefficients between the upper and lower cylinders cannot be found, except for fe/fo ¼ 1.0.

Fig. 16 shows the instantaneous vorticity fields for go ¼ 1 and fe/fo ¼ 0.8. The furthest position has a deflected near

wake pattern and the closest position has a symmetric pattern only in the near wake. Vortices shed from the cylinders

are distorted and merged in the near wake, forming complex and random wake patterns and with unclear periodicity.

When the cylinders are in the closest position, they are so close that vortex shedding interferes with each other.

Generally, instantaneous fields for go ¼ 1 are similar to those for go ¼ 1.4, but only in the near-wake field. When

fe/fo ¼ 1.0, the instantaneous vorticity fields for go ¼ 1 (Fig. 17) are similar to the previous cases with the same

frequency ratio as shown in Figs. 9 and 13.

Fig. 18 shows the instantaneous vorticity fields for v and fe/fo ¼ 1.2. While the wake patterns for go ¼ 1.8 and

go ¼ 1.4 show periodicity with modulation of the drag and lift coefficients, those for go ¼ 1 show unclear signs of

modulation with rather regular drag and lift coefficients. After merging of the two rows of streets, the wake pattern

became similar to that of a single bluff-body with one row of counter-rotating vortices. For go ¼ 1, ‘single bluff-body’,

‘flip-flop’, and ‘anti-phased synchronized’ patterns are found for 0.8pfe/fop1.2.

4.1.4. go ¼ 0.6

Although the flow may be 3-D for gp4 in the case of stationary cylinders (Kang, 2003), as the cylinders are oscillated

and as the gap varies from 0.2 to 1.0, the strong oscillation can be expected to strengthen the spanwise coherence

(Blackburn and Henderson, 1999), and help maintain the 2-D flow. For two stationary cylinders, the flow patterns at

go ¼ 0.6 include ‘single bluff-body’ and ‘flip-flop’ wake patterns (Kang, 2003). For two oscillating cylinders, the drag
Fig. 18. Time series of instantaneous vorticity fields for go ¼ 1 and fe/fo ¼ 1.2 for (a) the furthest positions and (b) the closest positions.
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Fig. 19. Drag and lift coefficients (left column) and power spectra of lift coefficients (right column) for go ¼ 0.6. In (a) and (d),

fe/fo ¼ 0.8; in (b) and (e), fe/fo ¼ 1.0; in (c) and (f), fe/fo ¼ 1.2.

D.S. Lee et al. / Journal of Fluids and Structures 25 (2009) 263–283278
and lift coefficients for go ¼ 0.6 show ‘single bluff-body’ and ‘deflected’ patterns for fe/fo ¼ 0.8 and fe/fo ¼ 1.0 and

‘single bluff-body’ and ‘flip-flop’ patterns for fe/fo ¼ 1.2. When fe/fo ¼ 0.8, when the gap between the two cylinders is

sufficiently small, vortex shedding is suppressed and shed vortices experience interference from each other. Thus, the

drag and lift coefficients are random, as shown in Fig. 19(a). The Fourier transforms of the lift coefficients are presented

in Fig. 19(d) and show primary peaks at f ¼ fe with additional minor peaks at 1
2
f e;

3
2
f e; 2f e. When fe/fo is 1.0, unlike other

cases with same frequency ratio under wider gaps, the drag coefficients of the upper and lower cylinders are not the

same and the lift coefficients are asymmetric about the centerline, as shown in Fig. 19(b). The Fourier transform of the

lift coefficients has a primary peak at fEfe and a minor peak at f � 1
2
f e, while other cases with the same frequency ratio

and different gap spacings have a minor peak at fE2fe. Thus, we see signs of sub-harmonic instability in this case. When

fe/fo ¼ 1.2, the general pattern of the drag and lift coefficients for go ¼ 0.6, as shown in Fig. 19(c), are similar to the case
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Fig. 20. Time series of instantaneous vorticity fields for go ¼ 0.6 and fe/fo ¼ 0.8 for (a) the furthest positions and (b) the closest

positions.

D.S. Lee et al. / Journal of Fluids and Structures 25 (2009) 263–283 279
of go ¼ 1 and the modulation has nearly disappeared. The Fourier transforms of the lift coefficients are shown in

Fig. 19(f) and show one primary peak at fEfe. Thus, all the cases for go ¼ 0.6 are of the lock-in type.

Figs. 20–22 show the instantaneous vorticity fields at fe/fo ¼ 0.8, 1.0, and 1.2, respectively, for go ¼ 0.6. The upper

outer vortex is developing around the upper cylinder and the lower outer vortex is about to be shed at the instant shown

in Fig. 20(a). From the time history of the drag coefficient shown in Fig. 19(a), we see flip-flopping behavior. Based on

this, the lower outer vortex is expected to develop around the lower cylinder in a similar manner at a corresponding

later time (not shown in this paper). For the case of fe/fo ¼ 1.0, the inner vortices are deflected to the upper cylinder, as

shown in Fig. 21(a and b), and the drag coefficient of the upper cylinder is greater than that of the lower cylinder, as

shown in Fig. 19(b). Similarly, when fe/fo ¼ 1.2, the inner vortices are deflected, as shown in Figs. 22(a and b) and 19(c).

Suppression of the inner vortices is inhibited because of the small gap, as shown in Figs. 20(b), 21(b), and 22(b). For all

frequency ratios for go ¼ 0.6, we observe a ‘single bluff-body’ pattern of shedding.

The flow patterns and power spectra of the lift coefficients are summarized in Tables 1 and 2, respectively. Table 1

shows the wake patterns classified based on the two parameters, gap between the two cylinders and frequency ratio. The

names of the shedding patterns are from Kang (2003) based on the results of two stationary cylinders-S is for ‘anti- or

in-phase synchronized’, F for ‘flip-flop’, D for ‘deflected’, and O for ‘single bluff-body’. Generally, for the same gap,

oscillating and stationary cylinders have the same type of wake pattern. At fe/fo ¼ 1.0, the flow patterns of the

stationary cylinders for same gap appear, while unexpected patterns appear for lower or higher frequency ratios.

According to Kang (2003), a deflected pattern appears for fe/fo ¼ 0.8 and go ¼ 1.4 at Re ¼ 185 and at Re ¼ 70 and

g ¼ 0.5 for two stationary cylinders. Therefore, more cases with various gaps, frequency ratios, and Reynolds numbers

are needed to determine the effects of gap and frequency ratio.

Table 2 shows the summary of peak values of the power spectra of the lift coefficients. For fe/fo ¼ 0.8, fo is the

primary peak except for go ¼ 0.6, where the gap is too small for independent vortex shedding, and as a result the

shedding is not in ‘lock-in’ status. The other cases with fe/fo ¼ 1.0 and 1.2 have primary peaks at the oscillating

frequency, so they are in the lock-in regime. Due to interferences of vortex shedding from each cylinder at smaller gaps,

the natural frequency disappears for fe/fo ¼ 0.8 and 1.2.
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Fig. 21. Time series of instantaneous vorticity fields for go ¼ 0.6 and fe/fo ¼ 1.0 for (a) the furthest positions and (b) the closest

positions.
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4.2. Hydrodynamic forces

The upper and lower drag coefficients for the oscillating cylinders integrated over time are shown in Fig. 23(a) as a

function of g for the stationary cylinders and go, the mean gap between the two cylinders. For fe/fo ¼ 0.8, the drag

coefficients decrease as go approaches 1.0, diverge to higher and lower values for lower and upper cylinder, respectively,

up to 1.4, and then converge at go ¼ 1.8. The drag coefficients are similar to those of stationary cylinders for go41.8.

For fe/foX1.0 and goX0.6, oscillating cylinders have higher drag coefficients than the corresponding stationary cases.

Fig. 23(b) shows the r.m.s. values of the drag coefficients for each cylinder. As the gap increases and as the cylinder is

excited with lower frequencies, fluctuations in the drag coefficient decrease. All the oscillating cases have higher r.m.s.

than the stationary cases. Fig. 23(c) shows the r.m.s. values of the lift coefficients. When fe/fo is 41.0, the oscillating

cases have greater fluctuations in the lift coefficients than the other oscillatory or stationary cases. The single oscillating

cylinder shows the same trend. The least value is obtained at fe/fo ¼ 1.0 for two oscillating cylinders and at fe/fo ¼ 0.8

for the single oscillating cylinder, as shown in Fig. 3.
5. Conclusions

Flow over two out-of-phase oscillating cylinders is numerically simulated using the immersed boundary method. The

two cylinders oscillate out-of-phase at Re ¼ 185, and the ratio of amplitude to cylinder diameter is 0.2. The ratios of

excitation frequency to natural vortex shedding frequency, fe/fo, and g to cylinder diameter, g, were systematically

varied.

As expected, two oscillating cylinders have characteristics of two stationary cylinders and a single oscillating cylinder.

Modulation phenomena appear for fe/fo ¼ 0.8, while in a single oscillating cylinder, modulation is observed only for

fe/foX1.1. For fe/fo ¼ 1.0, except for the smallest gap case of go ¼ 0.6, the characteristics are nearly the same for all the
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Fig. 22. Time series of instantaneous vorticity fields for go ¼ 0.6 and fe/fo ¼ 1.2 for (a) the furthest positions and (b) the closest

positions.

Table 1

Wake patterns of two oscillating cylinders

Stationary (Kang, 2003) fe/fo ¼ 0.8 fe/fo ¼ 1.0 fe/fo ¼ 1.2

go ¼ 1.8 S S S F, S

go ¼ 1.4 F, S D, S S S

go ¼ 1 F, S F S O, F, S

go ¼ 0.6 O, F O, F O, D O, F

Table 2

Peak values of Fourier transforms of lift coefficients of two oscillating cylinders

fe/fo ¼ 0.8 fe/fo ¼ 1.0 fe/fo ¼ 1.2

go ¼ 1.8 fo fe, 2fe fo, fe

go ¼ 1.4 fo fe, 2fe fo, fe

go ¼ 1 fo fe, 2fe fe

go ¼ 0.6 1
2

fe, fe,
3
2
fe, 2fe

1
2

fe, fe fe
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gaps considered. For fe/fo ¼ 1.2, modulation with beating is clear for the wide gap, similar to what was observed for a

single oscillating cylinder.

Most of the wake patterns of two oscillating cylinders can be explained in terms of mechanisms observed for two

stationary cylinders, a single oscillating cylinder, and their combinations. The near-wake can be classified with the

previous classification for two stationary cylinders. However, ‘in-phase synchronization’, which can be found for two

stationary cylinders over a similar parameter range, was not observed in the case of oscillating cylinders.
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Fig. 23. (a) Time-averaged drag coefficients, (b) r.m.s. of drag coefficients, and (c) r.m.s. of lift coefficients as a function of frequency

ratio and distance between two cylinders.
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Most oscillating cylinders have higher drag and r.m.s. of drag and lift coefficients than stationary cylinders. The drag

coefficients are affected by the oscillating frequency ratio and the gap distance, the r.m.s. of the drag coefficients is

dominated by both the oscillating frequency ratio and gap, and the r.m.s. of the lift coefficients increase drastically

when the frequency ratio is greater than 1.0.
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